bridge. ${ }^{1.40}$ The increased sturdiness of the heterocyclic-bridged polydeckers is central to their appeal as models for the study of delocalization in extended metal- π stacks.

The magnetic properties and ESR spectra of a number of odd-electron triple deckers with $\mathrm{C}_{3} \mathrm{~B}_{2} \mathrm{R}_{5}$ bridges were reported by Edwin and co-workers. ${ }^{5}$ The $29-\mathrm{e}^{-}$complex $\mathrm{Cp}_{2} \mathrm{FeCo}\left(\mathrm{C}_{3} \mathrm{~B}_{2} \mathrm{R}_{5}\right)^{+}$ was shown to have a ${ }^{2} \mathrm{E}_{2 \mathrm{~g}}$ ground state analogous to that of $\mathrm{Cp}_{2} \mathrm{Fe}^{+}$ (when proper allowance is made for reduction of symmetry upon substitution of $\mathrm{C}_{3} \mathrm{~B}_{2} \mathrm{R}_{5}{ }^{3-}$ for $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$).

Our 29-e- systems RuRu^{+}and CuRu^{+}are isoelectronic with the above FeCo cation, and we draw a similar conclusion about the electronic ground state. [In fact, in these complexes, the $\mathrm{e}_{2}{ }^{\prime \prime}$ level is expected to split into a close-lying $\mathrm{a}^{\prime}\left(\mathrm{d}_{x^{2}-y^{2}}\right)$ and $\mathrm{a}^{\prime \prime}\left(\mathrm{d}_{x y}\right)$ pair owing to the reduction of symmetry from $D_{5 d}$. A single-crystal ESR study would be necessary to distinguish between the two possibilities.] Although the Mossbauer spectra of the FeCo cation suggested a large amount of Fe character in the SOMO, a Co hyperfine splitting in the low-field g component was observed (ca. $50 \times 10^{-4} \mathrm{~cm}^{-1}$). We find a similar feature in the ESR spectrum of CoRu^{+}. These observations suggest that, in 29-e triple deckers of Co and Fe (or Ru), the half-filled orbital is distributed over both metals, with the dominant contribution being from the iron-group metal.

The $31-\mathrm{e}^{-}$heterodinuclear complexes may also be compared: the present CoRu^{-}with $\mathrm{Cp}_{2} \mathrm{FeCo}\left(\mathrm{C}_{3} \mathrm{~B}_{2} \mathrm{R}_{5}\right)^{-}$and $\mathrm{Cp}_{2} \mathrm{CoNi}$ $\left(C_{3} B_{2} R_{5}\right)^{+} .{ }^{5}$ In all three cases, the observation of an' ESR g component with a value of less than g_{e} eliminates a $\mathrm{d}_{2^{2}} \mathrm{SOMO}^{41}$
(40) For stable $27-e^{-}$complexes with bridging P_{5} ligands, see: (a) Scherer, O. J.; Schwalb, J.; Wolmershaeuser, G.; Kaim, W.; Gross, R. Angew. Chem., Int. Ed. Engl. 1986, 25, 363. (b) Scherer, O. J.; Schwalb, J.; Swarowsky, H.; Womershaeuser, G.; Kaim, W.; Gross, R. Chem. Ber. 1988, 121, 443.
and argues strongly for $\mathrm{d}_{x z}$ or $\mathrm{d}_{y z}$, descendant from the $\mathrm{e}_{1}{ }^{\prime}$ pair. However, the cobalt splittings vary greatly in this set of complexes. The iron-group complexes CoRu^{-}and $\mathrm{Cp}_{2} \mathrm{FeCo}\left(\mathrm{C}_{3} \mathrm{~B}_{2} \mathrm{R}_{5}\right)^{-}$have a large low-field splitting of $\mathrm{ca} .120 \times 10^{-4} \mathrm{~cm}^{-1}$, whereas the same splitting in $\mathrm{Cp}_{2} \mathrm{CoNi}\left(\mathrm{C}_{3} \mathrm{~B}_{2} \mathrm{R}_{5}\right)^{+}$is only $27 \times 10^{-4} \mathrm{~cm}^{-1}$. A tentative conclusion is that although these triple deckers show spin-delocalization when possessing odd-electron counts, the distribution of the unpaired electron is dependent on nuclear properties of the metals, and possibly on the properties of the bridging or capping ligands. Further investigation of these possibilities is warranted.

If these molecules are viewed as pentagonal bipyramidal clusters, our results also confirm two key predictions of Johnston and Mingos ${ }^{42}$ for such systems, namely that (1) the HOMO/ LUMO spacing of $30-\mathrm{e}^{-}$clusters is small, allowing electron counts in excess of 30 , and (2) the LUMO of the $30-\mathrm{e}^{-}$system will always be doubly degenerate (or nearly so, depending on symmetry), whereas the HOMO may either be doubly degenerate (e-type) or singly degenerate (a-type). ${ }^{42}$
Finally, the observation of completely delocalized RuRu^{+}and CoRu^{+}cations is encouraging with respect to the construction of electroactive (and possibly magnetoactive) polymers incorporating carborane-bridged triple-decker or tetra-decker sandwich units.

Acknowledgment. We are grateful to the National Science Foundation for support of this research at both the University of Vermont (Grant CHE 86-03728 and 91-16332) and the University of Virginia (Grant CHE 90-22713).
(41) Reference 37, pp 110 ff .
(42) Johnston, R. L.; Mingos, D. M. P. J. Chem. Soc., Dalton Trans. 1987, 647.

Mechanism of Formation of $\mathrm{C}-\mathrm{C}$ Bonds in the Ring Opening and Coupling of Thiophene by $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$

William D. Jones* and R. Martin Chin
Contribution from the Department of Chemistry, University of Rochester, Rochester, New York 14627. Received June 1, 1992

Abstract

Thermolysis of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}_{\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \text { in the presence of thiophene leads to the formation of the new product, }}$ $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\right]_{2}\left[1,2,3,4-\eta^{4}-5,6,7,10-\eta^{4}-\mathrm{S}(\mathrm{CH})_{8} \mathrm{~S}\right]$. The related reaction with dibenzothiophene leads first to the sulfur-bridged C -S-inserted cis dimer $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mu_{2}-\eta^{2}-\mathrm{SC}_{12} \mathrm{H}_{8}\right)\right]_{2}$ and then to the trans dimer of the same formula. These complexes have been structurally characterized, with the cis complex crystallizing in monoclinic space group $C 2 / \mathrm{c}$ with $a=16.323$ (6) \AA, $b=15.355$ (5) $\AA, c=14.646$ (5) $\AA, \beta=92.61(3)^{\circ}, Z=4$, and $V=3666.8$ (4.1) \AA^{3}. The trans isomer crystallizes in triclinic space group $P \overline{1}$, with $a=9.995$ (3) $\AA, b=10.290$ (2) $\AA, c=11.230$ (2) $\AA, \alpha=112.02(1)^{\circ}, \beta=97.99(2)^{\circ}, \gamma=114.66$ (2) ${ }^{\circ}, Z=1$, and $V=911.2(1.1) \AA^{3}$. The reaction of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}^{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ with 2-methoxythiophene is found to lead to the monomer $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}[\mathrm{C}(\mathrm{OMe})=\mathrm{CHCH}=\mathrm{CHS}]$, which is in equilibrium with the corresponding cis and trans sulfur-bridged dimers. The rate of cleavage of the cis dimer to give the monomer at $22^{\circ} \mathrm{C}$ is $3.12(12) \times 10^{-3} \mathrm{~s}^{-1}$. The rate of cleavage of the trans dimer to give the monomer at $22^{\circ} \mathrm{C}$ is $1.25(4) \times 10^{-5} \mathrm{~s}^{-1}$. Equilibrium parameters for the cis \rightleftharpoons monomer equilibrium are $\Delta H^{\circ}=7.0(0.7) \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\circ}=19$ (2) eu. Equilibrium parameters for the trans \rightleftharpoons monomer equilibrium are ΔH° $=10.4(0.7) \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\circ}=28$ (2) eu. An X-ray structural determination of the cis dimer shows the complex to crystallize in triclinic space group $P \overline{1}$, with $a=8.335(4) \AA, b=10.096(3) \AA, c=19.832(5) \AA, \alpha=89.54(2)^{\circ}, \beta=78.49(3)^{\circ}, \gamma$ $=67.97$ (3) ${ }^{\circ}, Z=2$, and $V=1511.9$ (2.1) \AA^{3}. The trans dimer crystallizes in triclinic space group $P \overline{1}$, with $a=10.814$ (3) $\AA, b=10.816$ (5) $\AA, c=16.301$ (4) $\AA, \alpha=84.79(3)^{\circ}, \beta=88.15$ (2) ${ }^{\circ}, \gamma=68.79$ (3) ${ }^{\circ}, Z=2$, and $V=1770.1$ (2.2) \AA^{3}. These structures are discussed with regard to the mechanism of the $\mathrm{C}-\mathrm{C}$ bond forming reaction.

Introduction

The reactions of thiophenes with transition metals as models for studying the hydrodesulfurization of petroleum have become of increased interest over the past few years. ${ }^{1}$ A variety of
coordination modes of thiophene have been exhibited and structurally characterized, ${ }^{2}$ and reactions in which the ring has been cleaved by attack of external reagents have been reported. ${ }^{3}$ More

[^0][^1]recently, the simple insertion of an unsaturated rhodium ${ }^{4}$ or iridium ${ }^{5}$ metal center into the thiophene $\mathrm{C}-\mathrm{S}$ bond has also been reported.

In the case of $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\right]$, coordination of the sulfur of thiophene was shown to precede the insertion of the metal into the $\mathrm{C}-\mathrm{S}$ bond (eq 1). Coordination to the π system in an η^{2} fashion led to $\mathrm{C}-\mathrm{H}$ bond oxidative addition. In comparison, the iridium species was found to insert into the C-S bond following η^{4} coordination in $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{Ir}\left(\eta^{4}\right.$-dimethylthiophene) and was catalyzed by added base (eq 2). The latter iridium complex is formally 16 electron and achieves an 18 -electron count by delocalization of a sulfur lone pair into the metallathiabenzene ring, resulting in a planar structure. In contrast, the rhodium complex achieves an 18 -electron configuration through the presence of a PMe_{3} ligand, and consequently the lack of electron delocalization results in a bent, localized diene structure.

Also of related interest is the complex ($\mathrm{C}_{5} \mathrm{Me}_{5}$) $\mathrm{Rh}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{Me}_{4} \mathrm{~S}\right)$ studied by Rauchfuss and co-workers. This molecule showed no tendency to undergo a similar $\mathrm{C}-\mathrm{S}$ insertion reaction, although thermolysis of trimeric $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\right]_{3}\left(\eta^{4}, \eta^{1}-\mathrm{SC}_{4} \mathrm{Me}_{4}\right)_{2}$ did give a product in which rhodium had inserted into the $\mathrm{C}-\mathrm{S}$ bond (eq 3). ${ }^{6}$ The reaction of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ with thiophene led to a similar bimetallic ring-opened product that was structurally characterized (eq 4). ${ }^{7}$

In the present study, we attempted to examine a rhodium complex that would insert into the $\mathrm{C}-\mathrm{S}$ bond of thiophene but would then have a labile ligand in place of the PMe_{3} group. $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$, which is known to be active in $\mathrm{C}-\mathrm{H}$ bond activation, ${ }^{8}$ proved to be just such a complex, although we were

[^2]

Figure 1. ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum of 1.

Figure 2. ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HETCOR spectrum of 1.
surprized to find that, while $\mathrm{C}-\mathrm{S}$ cleavage does indeed occur, a facile unprecedented $\mathrm{C}-\mathrm{C}$ bond forming reaction occurs concomitant with the $\mathrm{C}-\mathrm{S}$ cleavage. ${ }^{9}$

Results

Reaction of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathbf{R h}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ with Thiophene. Heating a benzene solution of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ with a 20 -fold excess of thiophene at $100^{\circ} \mathrm{C}$ results in the slow formation of free ethylene and a product containing two distinct $\mathrm{C}_{5} \mathrm{Me}_{5}$ ligands as evidenced by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{10}$ In addition, eight distinct multiplets of area 1 H each are seen in the $\delta 3-7 \mathrm{ppm}$ region of the spectrum. $A^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum revealed that each of the six most upfield resonances was coupled only to two nearest neighbors and that the two remaining downfield resonances were coupled to only one nearest neighbor, indicating that an asymmetric 8 -carbon

[^3]$(\mathrm{CH})_{8}$ array was present (Figure 1). A ${ }^{13} \mathrm{C}^{1} \mathrm{H}$ HETCOR spectrum revealed that, of the eight carbons, the six most upfield resonances showed a doublet coupling to rhodium, but the two most downfield resonances were singlets and were in the region expected for free olefinic carbon atoms (Figure 2). Furthermore, the six carbons attached to rhodium were at one end of the $(\mathrm{CH})_{8}$ chain. The product was formulated as the $\mathrm{C}-\mathrm{S}$ ring-opened $\mathrm{C}-\mathrm{C}$ coupled product 1 on the basis of this NMR data (eq 5). Subsequent isolation of a single small crystal provided sufficient data for an X-ray structure to be determined confirming this geometry (Figure 3), but the small quantity of data prevented a high-quality structure determination. ${ }^{9}$

Reaction of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ with 2-deuteriothiophene results in the formation of $1-d_{4}$, in which the resonances at $\delta 6.503$, $6.009,4.165$, and 3.245 are diminished in intensity by one-half, indicating that deuteriums are located only on carbons $1,4,5$, and 8 (eq 6). This distribution is consistent with coupling of the two α-carbons of thiophene following cleavage of the C-S bond.

In an attempt to look for an intermediate, a solution of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ in benzene containing thiophene was irradiated ($310-380 \mathrm{~nm}$) for 6 h . A small amount of a new product with a $\mathrm{C}_{5} \mathrm{Me}_{5}$ doublet resonance at $\delta 1.504$ was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum. In addition, four multiplets were seen at δ 11.843 (ddd, $J=9.2,6.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 9.082 (dd, $J=8.7,6.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.256 (ddd, $J=9.4,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), and 7.575 (ddd, $J=9.0,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, suggesting the formation of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}[\mathrm{CH}=\mathrm{CHCH}=\mathrm{CHS}]$ (eq 7). The dimer 1 was also observed as the major product, and upon standing at room temperature the resonances for the intermediate decreased as those for 1 increased.

Reaction of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathbf{R h}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ with Dibenzothiophene. Heating a solution of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ with an excess of dibenzothiophene in benzene at $100^{\circ} \mathrm{C}$ results in the formation of an orange solution. ${ }^{1} \mathrm{H}$ NMR examination of the sample shows the production of a single new product containing a single $\mathrm{C}_{5} \mathrm{Me}_{5}$ resonance and eight distinct olefinic multiplets. Further heating of the sample for 2-3 days results in the formation of a red crystalline precipitate. The ${ }^{1} \mathrm{H}$ NMR spectrum of this material in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solvent also shows a single $\mathrm{C}_{5} \mathrm{Me}_{5}$ resonance and eight distinct olefinic multiplets.

The red product was easily isolated by continued heating, and a single-crystal X-ray structure of the product shows it to be a symmetrical trans dimer structure in which the ($\mathrm{C}_{5} \mathrm{Me}_{5}$) Rh fragment has inserted into the $\mathrm{C}-\mathrm{S}$ bond of the dibenzothiophene following loss of both ethylenes and in which the insertion adduct has undergone a head-to-tail dimerization of the $\mathrm{Rh}-\mathrm{S}$ bonds, leaving the two $\mathrm{C}_{5} \mathrm{Me}_{5}$ rings on opposite sides of the $\mathrm{R}_{2} \mathrm{~S}_{2}$ square planar core (eq 8). The complex trans-2 sits on a crystallographic

Figure 3. ORTEP plot of 1. The $\mathrm{C}_{5} \mathrm{Me}_{5}$ groups were refined as rigid groups with all atoms isotropic except rhodium and sulfur.

Figure 4. ORTEP drawing of trans-2. Ellipsoids are shown at the 50% probability level.
center of inverstion and consequently involves coupling of both R and S stereochemistries at the rhodium center to give an R / S dimer. An ORTEP drawing is shown in Figure 4.

Isolation of the orange product proved possible by stopping the reaction at the point where this species is maximized. A sin-

Figure 5. ORTEP drawing of cis-2. Ellipsoids are shown at the 50% probability level. The $\mathrm{Cl}{ }^{\circ}-\mathrm{C} 12^{\prime}$ nonbonding distance is 3.2 A .

Figure 6. ORTEP drawing of trans-3. Ellipsoids are shown at the 50% probability level.
gle-crystal X-ray structure determination showed this material to be the cis dimer of 2 , with the two $\mathrm{C}_{5} \mathrm{Me}_{5}$ ligands on the same side of the $\mathrm{Rh}_{2} \mathrm{~S}_{2}$ core. Complex cis- 2 sits on a 2 -fold crystallographic axis, and it is worthwhile noting that the $\mathrm{C}_{12}-\mathrm{C}_{12}{ }^{\prime}$ nonbonding distance is only $3.2 \AA$. The centrosymmetric space group $C 2 / c$ requires that both R and S rhodium centers be present, but now they join to give both R / R and S / S pairs. An ORTEP drawing is shown in Figure 5.

Reaction of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathbf{R h}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{\mathbf{2}}$ with 2-Methoxythiophene. Heating a solution of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ with an excess of 2methoxythiophene in benzene at $100^{\circ} \mathrm{C}$ results in the formation of a purple solution which shows evidence for the presence of three distinct species by ${ }^{1} \mathrm{H}$ NMR spectroscopy in a 16:4:1 ratio. The major species could not be isolated and displays resonances at δ $6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, and 9.02 (dd, $J=8.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), as well as a $\mathrm{C}_{5} \mathrm{Me}_{5}$ resonance at $\delta 1.64$ and a methoxy resonance at 3.75 . The two minor species each displayed $\mathrm{C}_{5} \mathrm{Me}_{5}$ and MeO resonances, as well as olefinic multiplets in the $\delta 3-7$ range of the ${ }^{1} \mathrm{H}$ NMR spectrum. Upon concentration of the solution by removal of the solvent under vacuum, the purple solution became deep red until finally dark red crystals precipitated. Careful separation of two colors of crystals (orange and dark red) allowed isolation of the two minor products. Dissolution of each of these complexes in cold (<-40 ${ }^{\circ} \mathrm{C}$) toluene- d_{8} allowed NMR characterization of the products.

Figure 7. ORTEP drawing of cis-3. Ellipsoids are shown at the 50% probability level. The $\mathrm{Cl} 2-\mathrm{Cl} 2^{\prime}$ nonbonding distance is $3.88 \AA$.

Figure 8. Distribution of species during the approach to equilibrium by cis-3 at $22^{\circ} \mathrm{C}$ in $\mathrm{C}_{6} \mathrm{D}_{6}:-$ cis-3; $\Delta=$ trans $-3 ;$ ㅌ $=4$.

Furthermore, single-crystal X-ray structural determinations were carried out for each type of crystal, showing them to be the cis and trans dimers (cis-3 and trans-3) in which the ($\mathrm{C}_{5} \mathrm{Me}_{5}$) Rh fragment had again inserted into the $\mathrm{C}-\mathrm{S}$ bond of the thiophene adjacent to the methoxy group (eq 9). ORTEP drawings are shown in Figures 6 and 7. Once again, the cis complex shows a close CI-C6 nonbonding distance of only $3.88 \AA$.

The major species of this reaction was consequently assigned as the monomer $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}[\mathrm{C}(\mathrm{OMe})=\mathrm{CHCH}=\mathrm{CHS}]$ (4). Dimerization of the monomer is induced upon concentration of solution, which allows isolation of only cis-3 and trans-3. Furthermore, this dimerization was found to be reversible. Dissolution of crystals of cis-3 in toluene- d_{8} solution at $22^{\circ} \mathrm{C}$ results in the rapid ($\tau_{1 / 2}=3.7 \mathrm{~min}, k=3.12$ (3) $\times 10^{-3} \mathrm{~s}^{-1}$) generation of monomer 4 , with equilibrium being reached between these two species in about 1 h (Figure 8). Equilibration with trans-3 occurs on a much slower time scale, requiring days at room temperature.

Figure 9. Distribution of species during the approach to equilibrium by trans-3 at $22^{\circ} \mathrm{C}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$: $\quad=$ cis-3; $\mathrm{A}=$ trans $-3 ; \square=4$.

Figure 10. van't Hoff plot for the equilibrium between trans-3 and 4 (${ }^{5}$) and between cis-3 and 4 (-).

Similarly, isolated crystals of trans- 3 could be dissolved in tolu-ene- d_{8} and the approach to equilibrium with the monomer monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $22^{\circ} \mathrm{C}$. The rate of approach is much slower ($\left.\tau_{1 / 2}=15.4 \mathrm{~h}, k=1.25(4) \times 10^{-5} \mathrm{~s}^{-1}\right)$, so that now equilibration between monomer 4 and cis-3 occurs as the amount of trans- 3 diminishes (Figure 9).

The temperature dependence of these equilibria was measured by ${ }^{1} \mathrm{H}$ NMR spectroscopy by holding the temperature of the sample constant for 2-3 days at temperatures between 22 and 56 ${ }^{\circ} \mathrm{C}$. Plots of $\ln \left(K_{\text {eq }}\right)$ vs $1 / T$ were linear (Figure 10), giving equilibrium thermodynamic parameters for trans-3 $\rightleftharpoons 4$ of ΔH° $=10.4(0.7) \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\circ}=28(2) \mathrm{eu}$. For cis-3 $\rightleftharpoons 4, \Delta H^{\circ}$ $=7.0(0.7) \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\circ}=19$ (2) eu.

Discussion

The reaction of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ with thiophenes in all cases leads to products in which the rhodium has inserted into the $\mathrm{C}-\mathrm{S}$ bond, as summarized in Scheme I. The reaction would be expected to proceed by way of initial ethylene loss followed by coordination of sulfur and insertion into the C-S bond in analogy to the mechanism delineated for $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\right] .{ }^{4}$ This $\mathrm{C}-\mathrm{S}$ insertion adduct probably readily loses ethylene, however, as the $\mathrm{Rh}(\mathrm{III})$ species would not be expected to bind the π acceptor ethylene ligand as tightly as the $\mathrm{Rh}(\mathrm{I})$ starting material. ${ }^{11}$ The vacant site on the metal can be filled by donation from the lone pair on a sulfur from a second complex, leading to the formation of the square $\mathrm{Rh}_{2} \mathrm{~S}_{2}$ core. These complexes are observed for both the dibenzothiophene and 2 -methoxythiophene insertions, but not for thiophene itself.

The formation of cis and trans dimers from the monomer requires some discussion. In the case of dibenzothiophene, no
(11) An alternative mechanism for the formation of the insertion product would be to form ($\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}\right)$, analogous to Rauchfuss' $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{Me}_{4} \mathrm{~S}\right)$ and Angelici's ($\left.\mathrm{C}_{5} \mathrm{Me}\right) \mathrm{Ir}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{Me}_{2} \mathrm{H}_{2} \mathrm{~S}\right)$, prior to the $\mathrm{C}-\mathrm{S}$ insertion. The requirement of base catalysis in this mechanism might explain the slowing of the rate after $\sim 50 \%$ completion.

Scheme I

monomer intermediate is observed, and the dimer cis-2 is seen as the kinetic product resulting from R / R and S / S coupling. Upon further heating, the dimer dissociates back to the monomer and more slowly couples in an R / S fashion to give the thermodynamically preferred trans-2. It is not clear at this time as to whether the monomer is bent, and therefore has R and S forms, or whether the monomer is planar and the chirality is induced along the pathway to dimer formation. The latter view is probably correct, as the related mononuclear iridium derivatives isolated and structurally characterized by Angelici and co-workers are planar. ${ }^{5}$

No $\mathrm{C}-\mathrm{C}$ coupling product is observed with dibenzothiophene, as formation of a $\mathrm{C}-\mathrm{C}$ bond between Cl 2 and $\mathrm{C1} 2^{\prime}$ would destroy the aromaticity of two benzene rings. The crystal structure of cis-2 does show the close approach ($3.2 \AA$) of these two carbons, however. Also of importance is the orientation of the ring-opened thiophene fragments, which shows the p orbitals on the carbons that would be coupled pointing directly toward each other. This geometry is thought to be a model of the transition state for the thiophene $\mathrm{C}-\mathrm{C}$ coupling reaction. The proximity and orientation of the carbon atoms in the thiophene analog of cis-2 should be similar, but the C-C coupling now readily occurs to give the $\mathrm{S}(\mathrm{CH})_{8} \mathrm{~S}$ chain. Unbridging of the sulfur atoms and re-coordination of the polyolefin chain produces 1 as the thermodynamic product. Such a coupling does not occur in cis-2 as there would be a penalty for disrupting the aromaticity of two benzene rings.

In the case of the dimer formation with 2 -methoxythiophene, the monomer 4 can now be observed in equilibrium with cis-3 and trans-3. Insertion into the more hindered side of this substrate was unexpected. The stability of this monomer can be accounted for in terms of the delocalized resonance forms for the 16 -electron insertion adduct. One of these forms formally contains a methoxycarbene moiety, which lowers the energy of this monomer compared to the dibenzothiophene case (eq 10). At the typical concentrations used in these experiments ($\sim 0.003 \mathrm{M}$), the monomer is the major species in solution.

(10)

The ability to isolate cis- $\mathbf{3}$ and trans- $\mathbf{3}$ allowed the determination of the barriers for equilibration with the monomer. Plots of \ln ([dimer] $]_{t}$ - [dimer] ${ }_{\text {eq }}$) were linear, giving unimolecular rate constants for the respective conversions. The barriers ΔG^{\ddagger} determined at $22^{\circ} \mathrm{C}$ in this fashion are indicated in Scheme II. Equilibration of the mixture of trans-3, cis-3, and 4 at different temperatures gives the equilibrium thermodynamic parameters separating these species. Since monomer/dimer equilibria are involved, free energies will be relative to a standard state, in this

Table I. X-ray Data for cis-2, trans-2, cis-3, and trans-3

	trans-2	cis-2	trans-3	cis-3
chemical formula	$\mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{C}_{44} \mathrm{H}_{46}$	$\mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{C}_{44} \mathrm{H}_{46}$	$\mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{C}_{30} \mathrm{H}_{42} \cdot \mathrm{SC}_{5} \mathrm{H}_{3} \mathrm{OCH}_{3}$	$\mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{C}_{30} \mathrm{H}_{42}$
ctyst syst	triclinic	monoclinic	triclinic	triclinic
space group (No.)	PI (2)	$C 2 / c$ (15)	$P I$ (2)	$P \overline{1}$ (2)
Z	1	4	2	2
a, \AA	9.995 (3)	16.323 (6)	10.814 (3)	8.335 (4)
b, \AA	10.290 (2)	15.355 (5)	10.816 (5)	10.096 (3)
c, \AA	11.230 (2)	14.646 (5)	16.301 (4)	19.832 (5)
α, deg	112.02 (1)	90	84.79 (3)	89.54 (2)
β, deg	97.99 (2)	92.61 (3)	88.15 (2)	78.49 (3)
	114.66 (2)	90	68.79 (3)	67.97 (3)
$\text { vol, } \AA^{3}$	911.2 (1.1)	3666.8 (4.1)	1770.0 (2.2)	1511.9 (2.1)
$\rho_{\text {calcd }}, \mathrm{g} \mathrm{cm}^{-3}$	1.54	1.53	1.54	1.55
$\text { temp, }{ }^{\circ} \mathrm{C}$	-40	-40	-20	-20
2θ range, deg	$4-50(+h, \pm k, \pm l)$	$4-50(+h,+k, \pm l)$	$4-50(+h, \pm k, \pm l)$	$4-48(+h, \pm k, \pm l)$
intensities (unique, R_{i})	$3403(3201,0.038)$	$3400(3271,0.050)$	$6578(6219,0.030)$	$5129(4759,0.034)$
intensities $>3 \sigma\left(F^{2}\right)$	2596	1919	4087	3750
no. of params varied	217	217	388	325
μ, cm^{-1}	10.31	10.25	11.19	12.31
abs corr	differential	differential	differential	differential
range trans. factors	0.903-1.087	0.73-1.19	0.92-1.10	0.90-1.16
$R\left(F_{\mathrm{o}}\right)$	0.0382	0.0448	0.0359	0.0308
$R_{w}\left(F_{0}\right)$	0.0430	0.0496	0.0390	0.0398
goodness of fit	1.46	1.57	1.26	1.60

Scheme II

case chosen as 1 M. ${ }^{12}$ Under the experimental conditions of [4] $=\sim 0.0033 \mathrm{M}$, the free energy of 4 must be lowered by $R T \ln$ [4] ($3.4 \mathrm{kcal} / \mathrm{mol}$) in order to properly reflect the distribution of species, as shown in Scheme II by the dotted line. From this diagram, the kinetic selectivity of the monomer for forming cis-3 vs trans- 3 can be determined to be $70: 1$ ($\Delta \Delta G^{\ddagger}=2.5 \mathrm{kcal} / \mathrm{mol}$). The more rapid equilibration of the monomer with the cis dimer can also be seen, as the barrier is lower for this process.

The reaction of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ with thiophene proceeds directly to the $\mathrm{C}-\mathrm{C}$ coupled dithiooctatetraene product. The initially formed intermediate $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}[\mathrm{CH}=\mathrm{CHCH}=\mathrm{CHS}]$ is analogous to the iridium complexes isolated by Angelici and co-workers with 2 -methylthiophene and 2,5 -dimethylthiophene. ${ }^{5}$ ${ }^{1} \mathrm{H}$ NMR resonances for this intermediate were detected at δ $11.843,9.082,8.256$, and 7.575 , which compare with the values reported by Angelici and co-workers for the 2 -methylthiophene insertion complex. The rhodium complex, however, quickly dimerizes and $\mathrm{C}-\mathrm{C}$ couples. Once the $\mathrm{C}-\mathrm{C}$ bond is formed from the cis dimer, unbridging of the sulfur atoms and coordination of the unbound olefins result in the formation of 1 . The unsymmetrical nature of 1 is somewhat unexpected, as one can envision the formation of a symmetrical species in which $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}$ is coordinated to the four atoms at each end of the $\mathrm{S}(\mathrm{CH})_{8} \mathrm{~S}$ chain, leaving the free double bond in the center. As the rhodium is expected to be capable of migrating up and down the chain at
(12) Benson, S. W. Thermochemical Kinetics; John Wiley and Sons: New York, 1976; p 8.
the temperature at which $\mathbf{1}$ is formed, ${ }^{13}$ the observed geometry must be the result of a thermodynamic preference for coordination to six adjacent carbons. No evidence for dynamic interconversion of the independent $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}$ centers is seen upon heating the sample to $90^{\circ} \mathrm{C}$.
The $\mathrm{C}-\mathrm{C}$ bond formation involving the coupling of carbon atoms on adjacent metal centers is uncommon. It is perhaps most related to the coupling of dienes on palladium centers, which is believed to involve a reductive dimerization of butadiene. ${ }^{14}$ While couplings of sp^{2}-hybridized carbons on a single metal center are common, couplings of carbon ligands on separate metals are less well documented. ${ }^{15}$ Several polynuclear systems have been studied which show activities related to the chemistry presented here. Curtis has studied the reactions of a sulfur-bridged $\mathrm{Mo}_{2} \mathrm{Co}_{2}(\mu-\mathrm{S})_{3}$ cluster which extracts sulfur from thiophene to produce a $\mathrm{Mo}_{2} \mathrm{Co}_{2}\left(\mu_{3}-\mathrm{S}\right)_{4}$ cluster plus small hydrocarbon products. ${ }^{16}$ No intermediates were detected, however. Adams has examined reactions of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ with a number of small cyclic sulfur compounds and has found ring-opened products containing bridging sulfur atoms. ${ }^{17}$ Finally, Jensen has recently observed the insertion of a mononuclear palladium complex into a cyclic thioether, which then reductively eliminates to form a carbonchlorine bond. ${ }^{18}$
The single-crystal X-ray structures of trans-2, cis-2, trans-3, and cis- $\mathbf{3}$ are the first of their type. Tables I and II compare the relevant central structural features. All complexes display alternating short-long-short bond distances around the thiophene ring, indicative of little metallathiabenzene character. The nonbonding rhodium-rhodium distances all lie around $3.5 \AA$, and the $\mathrm{Rh}-\mathrm{S}$ bond holding the dimers together is slightly longer than the $\mathrm{Rh}-\mathrm{S}$ bond within the metallathiacycle ring. The $\mathrm{Rh}-\mathrm{C}_{\alpha}$ distances of 2.01-2.05 \AA are typical of $\mathrm{Rh}-\mathrm{sp}^{2}$-carbon bond lengths. Bond angles within the complexes are quite similar. There

[^4]Table II. Selected Distances (\AA) and Angles (deg) in trans-2, cis-2, trans-3, and cis-3 ${ }^{a}$

	trans-2	cis-2	trans $3^{\text {b }}$	cis-3 ${ }^{\text {c }}$
Bond Distances				
$\mathrm{Rh}_{1}-\mathrm{C}_{\alpha}$	2.059 (5)	2.021 (7)	2.013 (6), 2.018 (6)	2.014 (5), 2.002 (5)
$\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$	1.402 (7)	1.400 (13)	1.353 (8), 1.352 (9)	1.330 (7), 1.341 (7)
$\mathrm{C}_{\beta}-\mathrm{C}_{\gamma}$	1.484 (7)	1.556 (15)	1.440 (9), 1.46 (1)	1.433 (8), 1.449 (8)
$\mathrm{C}_{\boldsymbol{\gamma}}-\mathrm{C}_{\boldsymbol{\delta}}$	1.415 (7)	1.407 (13)	1.330 (9), 1.318 (9)	1.339 (7), 1.320 (7)
$\mathrm{S}-\mathrm{C}_{6}$	1.764 (5)	1.775 (8)	1.760 (6), 1.748 (6)	1.757 (5), 1.755 (5)
$\mathrm{Rh}_{1}-\mathbf{S}$	2.312 (2)	2.306 (2)	2.337 (2), 2.335 (2)	2.329 (2), 2.329 (2)
$\mathrm{Rh}_{2}-\mathrm{S}$	2.379 (2)	2.366 (2)	2.388 (2), 2.382 (2)	2.379 (2), 2.379 (2)
R $h_{1}-\mathrm{Rh}_{2}$	3.554 (2)	3.565 (2)	3.547 (1), 3.548 (2)	3.515 (1)
Bond Angles				
$\mathrm{Rh}_{1}-\mathrm{S}-\mathrm{Rh}_{2}$	98.48 (6)	99.47 (8)	97.32 (6), 97.53 (6)	96.59 (6), 96.61 (6)
$\mathrm{Rh}_{1}-\mathrm{C}_{\boldsymbol{a}}-\mathrm{C}_{\beta}$	128.4 (4)	126.6 (7)	129.0 (5), 128.7 (5)	129.4 (4), 130.0 (4)
$\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{C}_{\gamma}$	124.4 (4)	125.5 (8)	126.3 (6), 125.9 (6)	127.2 (5), 126.4 (5)
$\mathrm{C}_{\beta}-\mathrm{C}_{\gamma}-\mathrm{C}_{\delta}$	124.2 (4)	123.7 (9)	129.0 (6), 128.8 (6)	130.0 (5), 130.1 (5)
$\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{S}$	125.5 (4)	124.8 (8)	125.1 (5), 126.0 (5)	125.5 (4), 125.9 (4)
$\mathrm{C}_{5}-\mathrm{S}-\mathrm{Rh}_{1}$	107.6 (2)	108.2 (3)	107.9 (2), 107.4 (2)	109.2 (2), 109.2 (2)
$\mathrm{S}-\mathrm{Rh}_{1}-\mathrm{C}_{\alpha}$	89.8 (1)	91.2 (3)	90.7 (2), 90.7 (2)	92.7 (1), 92.6 (1)

${ }^{a}$ Distances and angles are listed using the atom scheme:

${ }^{b}$ Values are for the two independent halves of the molecule, each lying on a center of symmetry. ${ }^{c}$ Values are for the two halves of the molecule, which lies in a general position.
are slight differences in the puckering of the metallathiacycle rings, in which the sulfur and four carbon atoms are coplanar with the rhodium lying out of the plane at angles of $21-31^{\circ}$. The two phenyl rings of the dibenzothiophene adducts show twisting about the $\mathrm{C}-\mathrm{C}$ bond joining these rings of $\sim 26-29^{\circ}$.

Conclusions

The ring opening of thiophene by insertion of a low-valent metal into the $\mathrm{C}-\mathrm{S}$ bond is found to be quite general and can lead to $\mathrm{C}-\mathrm{C}$ bond formation by a new route. Dimer formation by way of bridging sulfur atoms can lead to the juxtaposition of two metal carbon bonds with p orbitals properly oriented for $\mathrm{C}-\mathrm{C}$ bond formation. The factors controlling the formation of the dimers (both cis and trans) have been elucidated, as have the factors influencing the stability of the monomeric $\mathrm{C}-\mathrm{S}$ insertion adduct.

Experimental Section

General. All operations and routine manipulations were performed under a nitrogen atmosphere, either on a high-vacuum line using modified Schlenk techniques or in a Vacuum Atmospheres Corporation dri-lab. Tetrahydrofuran, benzene, and toluene were distilled from dark purple solutions of benzophenone ketyl. Benzene- d_{6}, THF- d_{8}, and toluene- d_{8} were distilled under vacuum from dark purple solutions of benzophenone ketyl and stored in ampules with Teflon-sealed vacuum line adapters. $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ was prepared as previously reported. ${ }^{19}$ Thiophenes were obtained from Aldrich Chemical Co. and were used as received.
All ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AMX400 NMR spectrometer. All chemical shifts are reported in ppm (δ) relative to tetramethylsilane and referenced to the chemical shifts of residual solvent resonances $\left(\mathrm{C}_{6} \mathrm{H}_{6}, \delta 7.15\right)$. Data were typically recorded with a digital resolution of 0.3 Hz . All temperatures for variable-temperature NMR spectroscopy were calibrated relative to the chemical shift differences in the NMR spectra of known standards ($298-386 \mathrm{~K}, 80 \%$ ethylene glycol in DMSO- $d_{6} ; 228-298 \mathrm{~K}, 4 \%$ methanol in methanol- d_{4}). All kinetic plots and least-squares error analyses of rate data were done using Microsoft Excel. Analyses were obtained from Desert Analytics.
 lution of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}(122 \mathrm{mg}, 0.41 \mathrm{mmol})$ and thiophene (200 $\mu \mathrm{L}, 2.5 \mathrm{mmol}$) in 20 mL of benzene was freeze-pump-thaw degassed (3x) and heated in an ampule attached to a Teflon valve at $90^{\circ} \mathrm{C}$ for 15 h . A ${ }^{1} \mathrm{H}$ NMR spectrum of an aliquot showed 30% conversion to product. The solvent was removed under vacuum, and the residue was dissolved in 45 mL of benzene and $200 \mu \mathrm{~L}$ of thiophene added. Heating for 24 h followed by removal of solvent showed 40% conversion (other experiments showed up to 70% conversion to product). Washing with hexane ($5-10 \mathrm{~mL}$) yielded pure red-black crystals of $1(20 \mathrm{mg}, 20 \%$
(19) Maitlis, P. M.; Kang, J. W.; Moseley, K. J. Chem. Soc. A 1970, 2875.
isolated yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$) $\delta 6.503$ (dd, $J=5.5$, $\left.3.3 \mathrm{~Hz}, \mathrm{H}_{8}\right), 6.009\left(\mathrm{dt}, J=3.9,1.0 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.492(\mathrm{dd}, J=6.4,3.9 \mathrm{~Hz}$, H_{7}), 4.900 (ddd, $\left.J=8.0,3.9,2.0 \mathrm{~Hz}, \mathrm{H}_{2}\right), 4.818(\mathrm{dd}, J=6.8,4.0 \mathrm{~Hz}$, H_{6}), $4.165\left(\mathrm{ddd}, J=11.3,7.0,1.0 \mathrm{~Hz}, \mathrm{H}_{5}\right), 3.245\left(\mathrm{t}, J=11.0 \mathrm{~Hz}, \mathrm{H}_{4}\right)$, 2.915 (ddt, $J=11.0,7.9,1.3 \mathrm{~Hz}, \mathrm{H}_{3}$), $1.681\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right.$), 1.463 (s, $\mathrm{C}_{5} \mathrm{Me}_{5}$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right) \delta 140.14\left(\mathrm{~s}, \mathrm{H}_{8}\right), 121.55$ $\left(\mathrm{s}, \mathrm{H}_{7}\right), 92.17\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, \mathrm{H}_{1}\right), 87.46\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{H}_{2}\right), 86.14(\mathrm{~d}$, $\left.J=6.0 \mathrm{~Hz}, \mathrm{H}_{5}\right), 82.69\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, \mathrm{H}_{6}\right), 76.26\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, \mathrm{H}_{4}\right)$, $66.70\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, \mathrm{H}_{3}\right), 96.71\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 96.82(\mathrm{~d}, J$ $=5.7 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{Me}_{5}$), $10.05\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 9.08\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right)$. Anal. Calcd (Found) for $\mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{C}_{28} \mathrm{H}_{38}$: C, 52.18 (52.17); H, 5.94 (5.74).

Observation of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}[\mathrm{CH}=\mathrm{CHCH}=\mathrm{CHS}]$. A solution of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}(0.034 \mathrm{M})$ and thiophene $(0.31 \mathrm{M})$ in benzene- d_{6} was irradiated ($200 \mathrm{~W} \mathrm{Hg}, \lambda=310-380 \mathrm{~nm}$) for 6 h . A ${ }^{1} \mathrm{H}$ NMR spectrum of the sample showed the formation of ethylene and a small amount ($\sim 3-4 \%$) of a new product, assigned as the insertion adduct $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}[\mathrm{CH}=\mathrm{CHCH}=\mathrm{CHS}]$, as well as the $\mathrm{C}-\mathrm{C}$ coupled product $1(\sim 10 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.504(\mathrm{~s}, 15 \mathrm{H}), 11.843$ (ddd, $J=9.2$, $6.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.082$ (dd, $J=8.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.256(\mathrm{ddd}, J=9.4$, $7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.575(\mathrm{ddd}, J=9.0,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H})$.
Preparation of cis- and trans -[($\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mu-\mathrm{SC}_{12} \mathrm{H}_{8}\right)_{2} .\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ $\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ ($100.7 \mathrm{mg}, 0.342 \mathrm{mmol}$) and dibenzothiophene (206.5 mg , 1.12 mmol) were dissolved in 10 mL of benzene and placed in a Tef-lon-stopcocked ampule. The solution was degassed by three freeze-pump-thaw cycles. The yellow solution was heated at $100-110^{\circ} \mathrm{C}$ for 24 h . Free ethylene and the solvent were completely removed under vacuum ($10^{-4} \mathrm{mmHg}$), and the remaining solid was redissolved in 10 mL of benzene. The solution was heated for an additional 36 h , by which time the solution had turned black. The benzene was removed under vacuum, and the residue was washed with $3 \times 5 \mathrm{~mL}$ of hexanes. A total of 49 mg of an orange-brown powder was isolated (34% combined yield of cis and trans isomers). The ${ }^{1} \mathrm{H}$ NMR spectrum showed a 4.3:1 ratio of cis:trans isomers. cis-[(C5 $\left.\left.\mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mu-\mathrm{SC}_{12} \mathrm{H}_{8}\right)\right]_{2}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $\delta 1.40$ (s, 15 H), 6.12 (ddd, $J=7.6,7.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.49 (ddd, $J=$ $7.7,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=$ $7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (ddd, $J=7.5,7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=$ $8.0,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=7.6,1.5$ $\mathrm{Hz}, 1 \mathrm{H}$). Anal. Calcd (Found) for $\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{Rh}_{2} \mathrm{~S}_{2}: \mathrm{C}, 62.56$ (62.27); H , 5.49 (5.44). trans-[(C) $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mu-\mathrm{SC}_{12} \mathrm{H}_{8}\right]_{2}:{ }^{1} \mathrm{H}$ NMR $\delta 0.93(\mathrm{~s}, 15 \mathrm{H})$, 7.01 (ddd, $J=8.7,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (m, 2 H), 7.24 (ddd, $J=8.4$, $7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04$ (m, 1 H). Anal. Calcd (Found) for $\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{Rh}_{2} \mathrm{~S}_{2}: \mathrm{C}, 62.56$ (62.30); H, 5.49 (5.44).

Preparation of cis - and trans - $\left[\left(\mathrm{C}_{3} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{3} \mathrm{OMe}\right)\right]_{2}$. $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}(64.4 \mathrm{mg}, 0.219 \mathrm{mmol})$ and 2 -methoxythiophene (2 $\mathrm{mL}, 15.5 \mathrm{mmol}$) were dissolved in 100 mL of benzene and placed into a $250-\mathrm{mL}$ Teflon-stopcock flask. The solution was heated at $90-100^{\circ} \mathrm{C}$ for a total of 48 h . The solution was degassed every 12 h by removing approximately $5-10 \mathrm{~mL}$ of solvent under vacuum. The solvent was
removed from the deep purple solution, and the brown residue was redissolved in $1-2 \mathrm{~mL}$ of hexanes and recrystallized at $-35^{\circ} \mathrm{C}$. The solution was decanted to yield 30 mg of orange powdered cis$\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{3} \mathrm{OMe}\right)\right]_{2}$ and black-red crystalline trans$\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{3} \mathrm{OMe}\right)\right]_{2}\left(39 \%\right.$ combined yield). cis-[(C5 $\left.\mathrm{Me}_{5}\right) \mathrm{Rh}-$ $\left.\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{3} \mathrm{OMe}\right)\right]_{2}:{ }^{1} \mathrm{H}$ NMR (toluene- $\left.d_{8}\right) \delta 1.62(\mathrm{~s}, 15 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, $4.44(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=9.6,8.4 \mathrm{~Hz}, 1$ H). Anal. Calcd (Found) for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Rh}_{2} \mathrm{~S}_{2}$: C, 51.14 (51.06); H, 6.01 (5.88). trans-[($\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{3} \mathrm{OMe}\right)\right]_{2}:{ }^{1} \mathrm{H}$ NMR $\delta 1.49(\mathrm{~s}, 15 \mathrm{H})$, 3.73 ($\mathrm{s}, 3 \mathrm{H}$), $4.32(\mathrm{dt}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.74 (dd, $J=9.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$). Anal. Calcd (Found) for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Rh}_{2} \mathrm{~S}_{2}$: C, 51.14 (51.04); H, 6.01 (6.05).

Generation of $\left(\mathrm{C}_{3} \mathrm{Me}_{5}\right) \mathbf{R h}[\mathrm{C}(\mathbf{O M e})=\mathbf{C H C H}=\mathbf{C H S}] . \quad\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}$ $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}(1 \mathrm{mg}, 0.003 \mathrm{mmol})$ and 2 -methoxythiophene $(6 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ were dissolved in 0.5 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$ and placed in a resealable NMR tube. The yellow solution was heated at $100-110^{\circ} \mathrm{C}$ for 2 days. $A^{1} \mathrm{H}$ NMR spectrum of the resulting deep purple solution showed that the conversion to $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}[\mathrm{C}(\mathrm{OMe})=\mathrm{CHCH}=\mathrm{CHS}]$ was quantitative: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.64(\mathrm{~s}, 15 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ ($\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 9.02 (dd, $J=8.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}$).

Kinetics of Equilibration of trans $-\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathbf{R h}\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{3} \mathrm{OMe}\right)\right]_{2}$. trans- $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{3} \mathrm{OMe}\right)\right]_{2}(1.2 \mathrm{mg}, 0.0017 \mathrm{mmol})$ was placed into a resealable NMR tube, and 0.7 mL of toluene- d_{8} was condensed in at $-78^{\circ} \mathrm{C}$. The sample was shaken at low temperature until all of the complex had gone into solution. The sample was warmed to room temperature by placing it in a water bath, and ${ }^{1} \mathrm{H}$ spectra were recorded until the reaction reached equilibrium. The cis:trans:monomer ratios were monitored by integrating the methoxy resonances.
 $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{3} \mathrm{OMe}\right)\right]_{2}(1.7 \mathrm{mg}, 0.0024 \mathrm{mmol})$ was placed into a resealable NMR tube, and 0.7 mL of toluene $-d_{8}$ was condensed in at $-78^{\circ} \mathrm{C}$. The sample was shaken at low temperature until all of the cis- $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{3} \mathrm{OMe}\right)\right]_{2}$ had gone into solution. The sample was warmed to room temperature by placing it in a water bath, and ${ }^{1} \mathrm{H}$ spectra were recorded until the reaction reached equilibrium. The cis: trans:monomer ratio was monitored by integrating the methoxy resonances.

Temperature Dependence of Equilibrium Ratios of cis-3:trans -3:Monomer. The sample (from the above kinetic experiments) was held at a particular temperature for $1-2$ days, and a ${ }^{1} \mathrm{H}$ spectrum was recorded. After 12 h another ${ }^{1} \mathrm{H}$ spectrum was recorded to ensure that the cis: trans:monomer ratio was unchanged.

X-ray Structural Determination of trans-[(C5Mes)Rh($\left.\left.\mu_{2}-\eta^{2}-\mathrm{SC}_{12} \mathrm{H}_{8}\right)\right]_{2}$. A red prism of compound 2 was grown in an NMR tube and mounted with epoxy on a glass fiber. Preliminary cell determination was made with 25 centered reflections with values of x between 0 and 70°. Routine data collection of one hemisphere of data was undertaken on the primitive triclinic cell as indicated in Table I. The Molecular Structure Corporation TEXSAN analysis software package was used for data reduction and solution. ${ }^{20}$ Patterson map solution of the structure to locate the
rhodium atom, followed by expansion of the structure with the program DIRDIF, revealed all nonhydrogen atoms. The molecule was found to sit on a crystallographic center of inversion, such that only $1 / 2$ of one molecule was found in the asymmetric unit. Following isotropic refinement, an absorption correction was applied using the program DIFABS. Full-matrix least-squares anisotropic refinement of the non-hydrogen atoms (with hydrogens attached to carbons in idealized positions) was carried out to convergence. Fractional coordinates are given in the supplementary material and selected distances and angles in Table II.

X-ray Structural Determination of cis $-\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathbf{R h}\left(\mu_{2}-\eta^{2}-\mathrm{SC}_{12} \mathrm{H}_{8}\right)\right]_{\mathbf{2}}$. The data collection, solution, and refinement of this molecule proceeded similarly to that of the trans isomer, except that the complex crystallized in monoclinic space group $C 2 / c$ with four dimer molecules per unit cell. Solution and refinement were carried out as above, with the molecule lying on a crystallographic 2 -fold axis of rotation. Fractional coordinates are given in the supplementary material and selected distances and angles in Table II.

X-ray Structural Determination of trans- $\left[\left(\mathrm{C}_{3} \mathrm{Me}_{5}\right) \mathbf{R h}\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{3} \mathrm{OMe}\right)\right]_{2}$. The data collection, solution, and refinement of this molecule proceeded as above, except that the complex crystallized in triclinic space group PI with two dimer molecules per unit cell, each located on a different center of symmetry. A molecule of 2-methoxythiophene was also found in a general position. Solution and refinement were carried out as above. Fractional coordinates are given in the supplementary material and selected distances and angles in Table II.

X-ray Structural Determination of cis $-\left[\left(\mathrm{C}_{5} \mathbf{M e}_{5}\right) \mathbf{R h}\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{3} \mathrm{OMe}\right)\right]_{2}$. The data collection, solution, and refinement of this molecule proceeded as above, except that the complex crystallized in triclinic space group $P \bar{I}$ with two dimer molecules per unit cell (one full molecule lying in a general position). Solution and refinement were carried out as above. Fractional coordinates are given in the supplementary material and selected distances and angles in Table II.

Acknowledgment is made to the National Science Foundation (Grant CHE-9102318) for support of this work. W.D.J. also thanks NATO for a travel grant.

Supplementary Material Available: Tables of crystallographic data, including intramolecular distances and bond angles, positional parameters, anisotropic U values, and least-squares planes (11 pages); tables of observed and calculated structure factors (23 pages). Ordering information is given on any current masthead page.

[^5]
[^0]: (2) Angelici, R. J. Coord. Chem. Rev. 1990, 105, 61-76. Rauchfuss, T.

[^1]: (1) Angelici, R. J. Acc. Chem. Res. 1988, 21, 387-394. Friend, C. M.; Roberts, J. T. Acc. Chem. Res. 1988, 21, 394-400.

[^2]: (3) Spies, G. H.; Angelici, R. J. Organometallics 1987, 6, 1897-1903 Hachgenei, J. W.; Angelici, R. J. J. Organomet. Chem. 1988, 355, 359-378 Ogilvy, A. E.; Draganjac, M.; Rauchfuss, T. B.; Wilson, S. R. Organometallics 1988, 7, 1171-1177. Hübener, P.; Weiss, E. J. Organomet. Chem. 1977, 129, 105-115.
 (4) Jones, W. D.; Dong, L. J. Am. Chem. Soc. 1991, $113,559-564$. Dong, L.; Duckett, S. B.; Ohman, K. F.; Jones, W. D. J. Am. Chem. Soc. 1992, 114 , 151-160.
 (5) Chen, J.; Daniels, L. M.; Angelici, R. J. J. Am. Chem. Soc. 1990, 112, 199-204.
 (6) Luo, S.; Skaugset, A. E.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem Soc. 1992, 114, 1732-1735.
 (7) Jones, W. D.; Chin, R. M. Organometallics 1992, 11, 2698-2700.
 (8) Seiwell, L. P. J. Am. Chem. Soc. 1974, 96, 7134-7135.

[^3]: (9) A preliminary account of this work has appeared; see: Chin, R. M.; Jones, W. D. Angew. Chem., Int. Ed. Engl. 1992, 31, 357-358.
 (10) The reaction proceeds to only $\sim 50-70 \%$ completion after 15 h , and further heating results in little additional reaction. Degassing the sample to remove ethylene does not allow further conversion. Running the reaction in neat thiophene does not produce any of the $\mathrm{C}-\mathrm{C}$ coupled product, nor does the bis-ethylene complex diminish. Addition of NEt_{3} has no effect on the rate of product formation.

[^4]: (13) Smith, A. K.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1976, 1773-1777.
 (14) Tsuji, J. Organic Synthesis with Palladium Complexes; SpringerVerlag: Berlin, 1980.
 (15) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987; p 333.
 (16) Riaz, U.; Curnow, O.; Curtis, M. D. J. Am. Chem. Soc. 1991, 1/3, 1416-1417.
 (17) Adams, R. D.; Chen, G.; Sun, S.; Wolfe, T. A. J. Am. Chem. Soc. 1990, $112,868-869$. Adams, R. D.; Pompeo, M. P. Organometallics 1990, 9. 1718-1720. Adams, R. D.; Pompeo, M. P. Organometallics 1990, 9, 2651-2653. Adams, R. D.; Pompeo, M. P. J. Am. Chem. Soc. 1991, ll3, 1619-1626.
 (18) Yamamoto, H. H.; Yap, G. P. A.; Jensen, C. M. J. Am. Chem. Soc. 1991, $113,5060-5061$.

[^5]: (20) $R_{1}=\left\{\sum\left|F_{0}\right|-\left|F_{c}\right| \mid\right\} /\left\{\sum\left|F_{0}\right|\right\}$ and $R_{2}=\left\{\sum w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2}\right\}^{1 / 2} /\left\{\sum w F_{0}^{2}\right\}$, where $w=\left[\sigma^{2}\left(F_{0}\right)+\left(\rho F_{0}^{2}\right)^{2}\right]^{1 / 2}$ for the non-Poisson contribution weighting scheme. The quantity minimized was $\sum \omega\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$. Source of scattering factors $f_{0} f^{\prime}, f^{\prime \prime}$. Cromer, D. T.; Waber, J. T. International Tables for X-Ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, Tables 2.2B and 2.3.1.

